
Inr. I. Hea Mass Transfer. Vol. 5, pp. 1051-1052. Pergamon Press 1962. Printed in Great Britain. 

SHORTER COMMUNICATION 

AN APPROXIMATE ANALYTICAL SOLUTION FOR THE RADIATION EXCHANGE 

BETWEEN TWO FLAT SURFACES SEPARATED BY AN ABSORBING GAS 

ROBERT V. MEGHREBLIAN 

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 

(Received 2 January 1962 and in revised form 25 April 1962) 

INTRODUCTION 

THIS note summarizes the results of an approximate 
analytical solution for the temperature distribution in an 
absorbing gas layer with no internal energy sources and 
bounded by two flat surfaces radiating as black bodies 
[l]. This result is used to obtain an explicit expression for 
the net radiation exchange between the surfaces in terms 
of the various physical parameters involved. 

TEMPERATURE DISTRlBUTION 
The problem posed here was treated previously by 

Usiskin and Sparrow [2] who obtained solutions for the 
required quantities by a numerical solution of the 
appropriate integral equation. In the system investigated 
it was assumed that the absorption properties of the gas 
could be represented by a single coefficient of absorption 
which was independent of temperature. On this basis 
they derived a linear integral equation for the “tempera- 
ture” distribution function B(x). By introducing the 
generalized exponential integrals En(x), the appropriate 
form for the source-free equation may be written [3] 

2 &d = &[K (1 - x)1 + K _f; B(s)E,(K Ix - sl) ds (1) 

where 

B(x) = 
W,(x) - uTz4 

u(T14 - Ts4) (2) 

and 0 < x Q 1 is the fractional distance across the gas 
layer measured from the cold (T2) wall in the direction of 
the hot (TI) wall. The quantity 4kW,(x) dx represents the 
energy radiated per unit time from a gas layer of thick- 
ness dx and unit cross-sectional area [4]. A-special case 
of W,(x) is the familiar expression uT,,~(x). where T,(x) 
is the temperature of the gas. The parameter K is -t\he 
optical thickness of the gas layer and is defined K = kL; 
k is the absorption coefficient of the gas and L its thick- 
ness 

Equation (1) is in the form of the inhomogeneous 
Fredholm equation of the second kind, and formal solu- 
tions can be generated by an iterative procedure. In 
selecting a first approximation, we are guided by our 
knowledge of the general methods of the transport theory 
[5]. A first solution which is freauentlv used in this 
approach is a linear function; this-is borne out in the 
present case by an inspection of the Usiskin-Sparrow 

results. Therefore, in constructing our approximate 
analytical solution we introduce the form 

B(x; K) = U(K)X + C(K) 
into the integral as a first-order approximation and 
calculate the resulting expression for 0(x; K) at the left. 
If the assumed linear form is indeed a reasonable first 
estimate for 0(x), then the resulting expression from the 
left should have the form 

e(x; K) = u(lc)x + C(K) + R(x; K) (3) 
where the correction term R(x; K) will be small. The 
application of this procedure is straightforward, and leads 
easily to an expression for R. In carrying out this calcula- 
tion, it is necessary to impose also two conditions on 
6’(x) so that the specification of the quantities a&) and 
C(K) is complete. These are 

8Q; K) = g 8’@; K) = U(K). (4) 

The first condition is a consequence of the antisymmetry 
property of the function 0 [l]. The second implies that 
R’(&; K) = 0. The substitution of the linear form for 0 
into the right-hand side of equation (1) yields the result: 

R(x; K) = 3 (f!$ [e-Kz - e-K(l-d] 

- [C(K) + &4K)X1E~(KX) 

+ 11 - C(K) - :a(K)(l + x)lE,Ml - 41) 

with 

C(K) = t 11 - &)I. (6) 

The resulting expression for 0(x; K) given in equation (3), 
when compared with the numerical solution obtained by 
Usiskin and Sparrow, is found to be accurate to within 
1 per cent. The comparison is especially good for large 
K; when K > 1, the expressions for n and c have the 
asymptotic forms: 

U(K) - 1 - ” ; C(K) - 1 . 
K K 

(7) 

It may be observed from the form of the function (3) 
that further iteration will yield an intearal eauation for 
the correction term R(x; K>. Because of she a&symmetry 
property of 0, the next-higher-order approximation may 
be constructed by introducing an x3 term into (3). A 
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FIG. 1. Net radiative transfer to cold wall. 

continuation of this procedure will generate a power 
series in odd x which will converge, thereby providing an 
increasingly accurate analytical expression for 0. 

NET RADIATIVE TRANSFER 
Of practical interest is the calculation of the net radia- 

tive transfer between the hot wall and gas, and the cold 
wall. The appropriate equation may be written in the 
form [ll 

Q(K) = 2E&) + 2~ j; B(s)E,(,cs) ds (8) 

and q(K) is the net energy transferred per unit area and 
time to the cold wall. It is easily shown that Q(K) has the 
following properties: 

lim Q&) = 1, lim Q(K) = 0, 

K--+0’ K-f a, (IO) 

as is to be expected on physical grounds. The function 
Q(K) has been computed by Usiskin and Sparrow for the 
interval (0 < K < 2) using the numerical solution for 
6(x) mentioned previously. Of particular interest to this 
discussion is the comparison of their result with that 
obtained using the analytical form for 0 suggested in the 
preceding section. If one neglects entirely the correction 
term R, then direct substitution into equation (8) yields 

QM = 4 [l + (; - 1) 4d] 
2a(K)e-K -_ 

3K 
-I- [I - fp] E&c). (11) 

It may be shown that this result also satisfies the limits 
(10). A graphical comparison with the exact numerical 
solution is shown in Fig. 1. Evidentally, the use of the 
linear form for B yields an estimate for Q which agrees 
to within about 10 per cent in the interval (0.1 < K < 1); 
even better agreement is obtained outside the interval. 

A final comparison of some practical value may be 
drawn from the result obtained for the net radiation 
exchange Q(K) in a system wherem the gas layer is at 
some uniform equihbrium temperature [l]. In that case, 
it may be shown that Q(K) takes the form 

Q(K) = 1,(1 + C-K). [(12) 

This function also is shown in Fig. 1; agreement with the 
variable-temperature case is reasonably good up to two 
optical thicknesses of gas layer. 
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